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Abstract. A standard quadratic problem consists of finding global maximizers of a quadratic form
over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened
by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices
(the positive semidefinite matrices which allow a factorizationFFT whereF is some non-negative
matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a
non-negative quadratic form on the positive orthant). This conic formulation allows us to employ
primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evol-
utionary dynamics algorithm which generates primal-feasible paths along which the objective is
monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling
directions are used to escape from local maxima encountered during the evolutionary dynamics
phase.
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1. Introduction

A standard quadratic problem (standard QP) consists of finding global maximizers
of a quadratic form over the standard simplex, i.e. we consider global optimization
problems of the form

x>Ax → max! subject tox ∈ 1, (1)

whereA is an arbitrary symmetricn × n matrix; a> denotes transposition; and1
is the standard simplex in then-dimensional Euclidean spaceRn,

1 = {x ∈ Rn+ : e>x = 1} ,
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wheree = [1, . . . ,1]> andRn+ denotes the non-negative orthant inRn (of course,
the region{y ∈ Rn+ : e>y 6 1} can always be represented by1 ⊆ Rn+1,
introducing a slack variable). To avoid trivial cases, we assume throughout the
paper that the objective is not constant over1, which means that{A,E} are lin-
early independent whereE = ee> is then × n matrix consisting entirely of unit
entries, so thatx>Ex = (e>x)2 = 1 on1. For a review on standard QPs and its
applications, which also offers a justification for terminology see [9].

Note that the maximizers of (1) remain the same ifA is replaced withA+ γE
whereγ is an arbitrary constant. So without loss of generality assume henceforth
that all entries ofA are non-negative. Furthermore, the question of finding maxim-
izers of a general quadratic functionx>Qx + 2c>x over1 can be homogenized in
a similar way by considering the rank-two updateA = Q+ec>+ce> in (1) which
has the same objective values on1.

Of course, quadratic optimization problems like (1) are NP-hard [24]. Never-
theless, there are several exact procedures which try to exploit favourable data
structures in a systematic way, and to avoid the worst-case behaviour whenever
possible. One example for this type of algorithms is specified in this paper: the
proposed procedure exploits extensively the special structure of a standard QP (e.g.,
that the feasible set is the standard simplex), as opposed to the general formulation
of a quadratic problem.

This article deals with the application of an interior-point method to an exten-
sion of semidefinite programming called copositive programming, and is organ-
ized as follows: Section 2 contains a concise exposition of primal and dual prob-
lems in copositive programming which involves copositive rather than positive-
semidefinite matrices, using an explicit characterization of the dual cone of the
convex, non-polyhedral cone of all copositive matrices. We also shortly treat (the
relaxation of copositive programming to) all-quadratic problems on the simplex
as considered in [43]. In Section 3, this will be then specialized to be applied to
standard QPs, which enjoy the property that the copositive programming relaxa-
tion becomes an exact reformulation of (1). Here the dual is in fact a univariate
copositive-feasibility problem which can be seen as a straightforward general-
ization of an eigenvalue bound problem. Section 4 contains a short review on
the replicator dynamics, which by now has become an increasingly popular local
optimization procedure for standard QPs. This technique is combined with primal-
dual search directions from general conic programming [30, 47], which are used
to escape from inefficient local solutions returned by the replicator dynamics iter-
ation.
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2. Copositive programming problems: general setup

Consider the following primal-dual pair of linear programming problems over a
pointed convex coneK ⊂ Rd , see, e.g. [18, 30, 39, 47]:

f (x) = c>x → max! subject to Dx = b , x ∈K , (2)

whereD is anm× d matrix with full row rank andb ∈ Rm while c ∈ Rd , and

g(y) = b>y → min ! subject to D>y − s = c , y ∈ Rm , s ∈ K∗ , (3)

whereK∗ = {s ∈ Rd : s>x > 0 for all x ∈ K} is the (convex) dual cone ofK.
In semidefinite programming,d = (n+1

2

)
andK coincides with the coneP of all

symmetric positive-semidefiniten× n matrices, which is self-dualP = P ∗ under
the usual inner product〈S,X〉 = trace(SX) on thed-dimensional Euclidean space
Sn constructed by identifying the upper triangular half of a symmetricn×nmatrix
with its vectorized version.

However, we need not restrict ourselves to cases of self-dual conesK if we
can handle the dual coneK∗, even if the geometry ofK andK∗ becomes more
complicated. In fact, it turns out useful to study more general cases, e.g. putting
K∗ equal to the cone of copositive matrices.

Recall that a symmetricn×nmatrixM is said to becopositive(more precisely,
Rn+-copositive), if

v>Mv > 0 wheneverv > o , (4)

i.e., if the quadratic form generated byM takes only non-negative values on the
positive orthantRn+ (for lucid notation, we denote the zero vector byo while O
designates a matrix of zeroes, to distinguish these entities from the number 0).
The matrixM is said to bestrictly (Rn+-)copositive, if the inequality in (4) is strict
wheneverv 6= o. Clearly, this coneK∗ has non-empty interior and so does its
(pre-)dual coneK (see Proposition 1 below) which can be described as follows,
see, e.g. [20, 45]:

K = conv{xx> : x ∈ Rn+} , (5)

the convex hull of all symmetric rank-one matrices, i.e. dyadic products, generated
by non-negativevectors. Elements ofK are calledcompletely positive matrices.
Note that dropping non-negativity requirement, we again arrive at the semidefinite
case. Even without constraints, checking whether or not a matrix belongs toK∗ is
co-NP-hard [38]. Some algorithms for this problem can be found, e.g. in [35, 19,
48, 5, 49, 50, 14, 6], to mention just a few. Less obvious is the primal feasibility
problem (also without constraints). In fact, the authors are not aware of any finite
and exact procedure to determine whether or not a given symmetricn×nmatrix is
completely positive ifn > 4. See also [3, 4, 15, 34, 27, 51, 21, 31]. However, the
following result may be helpful:
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PROPOSITION 1.LetK be as in (5),d = (n+1
2

)
, and denote by

K+ = {X ∈ P : √X has no negative entries} . (6)

Then

K = {FF> : F is a non-negativen× (d + 1) matrix} = convK+ . (7)

Proof. In view of Caratheodory’s theorem, the first identity (cf. Theorem 1 of
[34]) is obvious by taking

F = [x1, . . . , xd+1] diag(
√
λ1, . . . ,

√
λd+1)

if X = ∑d+1
i=1 λixix

>
i for someλi > 0, all i ∈ {1, . . . , d + 1}, and by noting

that the middle set in (7) necessarily is a subset ofK∗∗ = K due to the fact that
〈M,FF>〉 = ∑k

i=1 f
>
i Mfi > 0 if M ∈ K∗ andfi ∈ Rn+ are the columns ofF .

But then the inclusionK+ ⊆ K is also immediate. To finalize the proof, observe
that
√
xx> = 1√

x>x xx
> ∈K+ if x ∈ Rn+ implies thatK ⊆ coK+.

Unfortunately, the coneK+ itself is not convex and therefore strictly smaller
thanK, as the following example shows:

EXAMPLE 2. The nonsingular3× 3 matrix

X =
1 0 1

0 1 1
1 1 3

 = aa> + bb> + cc> with a =
1

0
1

 , b =
0

1
1

 , c =
0

0
1

 ,

belongs toK (cf. [3]). However, its square root is approximately

√
X ≈

 0.908 −0.092 0.408
−0.092 0.908 0.408
0.408 0.408 1.633


whenceX /∈K+ although the rank-one matricesaa>, bb> andcc> as seen above
belong toK+. A singular variant is obtained byaa>+bb>, i.e. replacing the lower
right corner entry ofX with 2.

As a general application of the primal-dual approach given by (2) and (3) con-
sider the so-called all-quadratic problem on1 which appears as a subproblem
in [43]:

x>A0x → max! subject tox ∈ 1, x>Aix = bi , 16 i 6 m . (8)

Note that also inhomogeneous quadratic constraints can be written in this form (see
above), so that by introducing slacks we also can write problems with quadratic
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inequality constraints in the form (8). Further, additional linear constraints of the
form d>x = δ can be written as〈D,X〉 = δ2 with D = dd>, givend>x does not
change sign over the feasible set (otherwise one has to subdivide this set accord-
ingly). So the normalization condition in1 can be written as〈E,X〉 = (e>x)2 =
1. Hence withK as in (5), we may view the following copositive programming
problem as a relaxation of (8):

〈A0, X〉 →max!
subject to 〈E,X〉 = 1 , 〈Ai,X〉 = bi , 16 i 6 m, X ∈K .

(9)

Indeed, linearity (in fact, convexity) of the objective ensures that one solutionX

to the problem (9) is attained at an extreme point of the feasible set. IfX happens
to lie also on an extreme ray ofK, then automaticallyX = xx>, so that this
condition can be dropped without loss of generality. In this case, the relaxation (9)
becomes an exact reformulation of (8). Unfortunately, this is not always the case,
as the following example shows:

EXAMPLE 3. Consider the problem (9) to maximize〈A0, X〉 = 2x11+x22 subject
to 〈A1, X〉 = x11 = 1

2 = b1 and, of course,X ∈ K as well as〈E,X〉 = 1.
Obviously, the only solution to this problem is given by the rank-two matrixX∗
with x∗11 = x∗22 = 1

2 whilex∗ij = 0 else.

We proceed as in the general case with the primal-dual pair (2),(3) to estab-
lish the dual problem of (9) which hasm + 1 structural variablesy0 and y =
[y1, . . . , ym]>, and alsod slacks contained inS:

y0 + b>y → min ! subject toy0E +
m∑
i=1

yiAi − S = A0

with y0 ∈ R , y ∈ Rm , S ∈ K∗. (10)

Given that we can solve the primal and dual feasibility problems with limited
effort, it is possible to use the search directions for a feasible primal-dual interior
point algorithm. Indeed, the following results of Nesterov and Nemirovskii [39] are
valid for a general class of convex cones which include the coneK given by (5):

− There exist so-called self-concordant barrier functions for the conesK and
K∗;

− Interior point methods which converge in a polynomially bounded number of
steps can be formulated using the self-concordant barriers.

Unfortunately, no polynomially computable self-concordant barriers are known for
K andK∗, for an elaborate discussion on this topic see [45]. However, Tunçel [47]
has recently noticed that even in this case one can still formulate a class of interior
point methods known as primal–dual affine scaling algorithms.
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For ease of reference we now reproduce a generic roster for a primal-dual
interior-point method from [22, 29, 36]. Of course, it is in general not harder
to solve (8) to optimality than to resolve the feasibility questions (i.e., to check
membership ofK or K∗) below, but there could be special instances where the
procedure is still helpful.

Generic Interior-Point Primal-Dual Algorithm

1. Choose an initial point(X0, y0, S0) with X0 ∈ int K, y0 = [y0
0, . . . , y

0
m]> ∈

Rm+1, such that〈E,X0〉 = 1 and 〈Ai,X0〉 = bi for all i = 1, . . . , m; and that
S0 = y0

0E +
∑m

i=1 y
0
i Ai − A0 ∈ int K∗. Put(X, y, S) = (X0, y0, S0).

2. Until a stopping criterion is satisfied, repeat the following step: choose an
improving feasible direction(dX, dy, dS) and step lengthα > 0 such that
still X + αdX ∈ int K as well asS + αdS ∈ int K∗. Update(X, y, S) =
(X + αdX, y + αdy, S + αdS).

Feasibility w.r.t. the equality constraints is maintained by the so-called primal-dual
affine scaling (or zero-order) search direction provided by Kojima and Tunçel [30,
47]. Slightly simplified, this class of directions is the solution of the linear system
in Sn × Rm+1× Sn

〈E, dX〉 = 0 ,
〈Ai, dX〉 = 0 , i ∈ {1, . . . , m} ,

Edy0 +∑m
i=1Aidyi − dS = O ,
dX +QHdS = −X

(11)

whereH is an arbitrary positive-definite, symmetric linear operator onSn and

QHY = HY + 〈X,Y 〉〈X, S〉X −
〈S,HY 〉
〈S,HS〉HS , Y ∈ Sn . (12)

As usual, the remaining (strict) feasibility requirements are guaranteed by a suit-
able choice of the step lengths. Note that a solution to (11) always exists as alsoQH

is positive-definite provided that the duality gap〈X, S〉 > 0 which is guaranteed
for interior point pairs(X, S) ∈ int K × int K∗ (cf. Theorem 3.3 in [47]), since
we assume that{E,A1, . . . , Am} are linearly independent, in correspondence with
the full row rank assumption onD in (2). Thus we have the same situation as in
the classical SDP case for the search direction commonly used there, cf., e.g. [16].

Kojima and Tunçel prove in [30] (cf. Theorem 3.4 in [47]) that if we choose
the search directions from (12), then the duality gap decreases linearly with a
factor essentially being the step length, and both primal and dual objectives will be
improved, unless optimality is reached. Decisive for their arguments is the positive
definiteness ofH and the property thatQHS = X.

Looking at formula (12), it is evident that much would be gained if the terms
containingHS vanished, which of course is impossible ifH is positive-definite.
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We therefore propose a positive-semidefinite variant of the above-mentioned result
whereH has a single zero eigenvalue belonging to the directionS. Note that we
no longer assume that(X, S) ∈ int K × int K∗, but only〈X, S〉 > 0. Recall that
the latter relation characterizes non-optimality of pairs(X, S).

THEOREM 4. Suppose thatH is a positive-semidefinite, symmetric linear oper-
ator onSn with

{Y ∈ Sn : HY = O} = {λS : λ ∈ R} .
Consider a pair(X, S) ∈ K×K∗ with 〈X, S〉 > 0 and define the symmetric linear
operatorRH onSn by

RHY = HY + 〈X,Y 〉〈X, S〉X , Y ∈ Sn . (13)

ThenRH is positive-definite and satisfiesRHS = X.
Furthermore, the solution(dX, dy, dS) to the system inSn × Rm+1× Sn

〈E, dX〉 = 0 ,
〈Ai, dX〉 = 0 , i ∈ {1, . . . , m} ,

Edy0 +∑m
i=1Aidyi − dS = O ,
dX +RHdS = −X

(14)

is unique and satisfies〈X + αdX, S + αdS〉 = (1− α)〈X, S〉.

Proof.The first argument is quite similar to that in Theorem 3.3 of [47]. For any
Z ∈ Sn, consider

〈Z,RHZ〉 = 〈Z,HZ〉 + 〈X,Z〉
2

〈X, S〉
which is non-negative and can vanish only if both〈X,Z〉 = 0 andHZ = O. But
unlessZ = O this is absurd as the latter relation impliesZ = βS for someβ ∈ R
by assumption whereas〈X,Z〉 = β〈X, S〉, and, again by assumption,〈X, S〉 > 0.
Hence the operator is positive-definite. Finally,RHS = O + 1 · X = X. Turning
to system (14), we show that the related homogeneous system in(dX, dy, dS) has
only the trivial solution. Indeed, substituting fordS in the equationdX+RHdS =
O yields

dX = −dy0RHE −
m∑
i=1

dyiRHAi ,

and substituting then fordX in the firstm+1 equations of (14) gives, after changing
the signs, a homogeneous system indy with coefficient matrix

〈E,RHE〉 〈E,RHA1〉 · · · 〈E,RHAm〉
〈A1,RHE〉 〈A1,RHA1〉 · · · 〈A1,RHAm〉

...
...

. . .
...

〈Am,RHE〉 〈Am,RHA1〉 · · · 〈Am,RHAm〉
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which is, due to linear independence of{E,A1, . . . , Am}, easily seen to be positive-
definite asRH is so. Thusdy = o, yieldingdS = dX = O. Hence (14) has always
a unique solution. To establish reduction of the duality gap, let us first deal with the
second-order term〈dX, dS〉 which vanishes because of the feasibility conditions
imposed on(dX, dy, dS) in (14): indeed,

〈dX, dS〉 = 〈dX,Edy0 +
m∑
i=1

Aidyi〉 =
m∑
i=0

0.dyi = 0 .

Now the first-order terms〈X, dS〉 + 〈dX, S〉 = −〈X, S〉 because of

〈dX, S〉 = −〈X, S〉 − 〈RHdS, S〉
= −〈X, S〉 − 〈dS,RHS〉 = −〈X, S〉 − 〈dS,X〉 .

This establishes〈X + αdX, S + αdS〉 = (1− α)〈X, S〉.

Using similar arguments as in [30], one can also show that both primal and
dual objectives are improved by the directions given by (14). We will establish this
result directly in the next section for the special case we focus upon in this paper.
Further observe that becauseX or S might be singular a zero step might occur.
Extra care is needed to guarantee the existence of a positive step.

REMARKS

In semidefinite programming (SDP) whereK = K∗ = P , there are many pos-
sible choices of the operatorRH ; only one choice is known to allow conver-
gent algorithms to an optimal solution, namely the Nesterov-Todd primal–dual
affine-scaling direction, whereRHY = T YT with

T = √X
(√√

XS
√
X

)−1√
X.

Note thatRHS = X and thatRH is a positive definite linear operator. Also note
that this choice ofRH is not possible for copositive programming, since

√
XS
√
X

is not positive-definite for all copositive matricesS. For SDP, the primal-dual al-
gorithm using this search direction is globally convergent and polynomial for a
suitable choice of the step length [28].

Another choice of primal-dual scaling direction is the so-called (primal) HKM
affine-scaling direction, whereRHY = 1

2

(
XYS−1+ S−1YX

)
. As mentioned, this

search direction is not globally convergent to an optimal solution for any choice of
step length. In particular, it can converge to a non-optimal point [37]. Moreover, it
cannot be used for copositive programming because a copositive matrixS can be

singular despite〈X, S〉 > 0 for allX ∈ K \{O}, e.g.S =
[
4 2
2 1

]
, which is linearly

independent fromE.
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Finally, a primal-dual affine scaling direction for SDP which is also defined for
copositive programming is the so-called dual HKM direction, which is given as the
solution of

〈E, dX〉 = 0 ,
〈Ai, dX〉 = 0 , i ∈ {1, . . . , m} ,

Edy0 +∑m
i=1Aidyi − dS = O ,

dS + 1
2

(
X−1(dX)S + S(dX)X−1

) = −S. (15)

As with the (primal) HKM direction, no primal-dual SDP algorithm using this
search direction is globally convergent [37].

The preceding observations prove two things:

− Using only primal-dual affine scaling directions in interior point methods
for conic programming does not necessarily lead to a globally convergent
algorithm;

− One cannot guarantee a fixed feasible step length for all primal-dual affine
scaling directions (even in the SDP case); in other words, ‘jamming’ can
occur.

Therefore we will discuss a hybrid algorithm in Section 4 which uses primal-dual
affine-scaling steps only as an escape strategy.

The reason why we use affine-scaling directions, as opposed to path following
directions, is that we have no characterization of the central path for our problem.
We could imitate the dual path-following HKM direction of SDP by using the
above system (15) and adding a termµX−1 on the right hand side, whereµ now
imitates the centrality parameter. Note that this will not work for the other direc-
tions, since the inverse ofS does not necessarily exist, and the terms involvingµ

there also involveS−1.

3. Standard quadratic optimization and copositive programming

First note that the standard QP (1) is a special case of the all-quadratic problem (8)
with no quadratic constraints andA0 = A. Hence in this case we arrive at the
copositive programming problem (9) with a single constraint:

〈A,X〉 → max! subject to 〈E,X〉 = 1 , X ∈K , (16)

so that the dual has only one structural variabley = y0:?

y → min ! subject to yE − S = A with y ∈ R , S ∈K∗ . (17)

This amounts to search for the smallesty such thatyE − A is copositive. In this
sense, the dual problem (17) is related to the question of eigenvalue bounds [26]
(replaceE with the identity matrixI and ‘copositive’ with ‘semidefinite’).
? From this point ony will denote a scalar variable.
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Further observe that in this case, (16) is no relaxation but indeed an exact re-
formulation of the standard QP (1): indeed, the objective function in (16) is linear
so that a solution of this problem is attained at an extremal point of the feasible
set. Now the next result shows that these extremal points are exactlyX = xx>, the
rank-one matrices based on vectorsx ∈ 1, so that from extreme solutions of (16)
we can easily construct a solution of the original standard QP (1) with the same
objective value〈A,X〉 = x>Ax.

LEMMA 5. The extremal points of the feasible set of (16) are exactly the rank-one
matricesX = xx> with x ∈ 1.

Proof. Of course allX = xx> with x ∈ 1 belong toM = {X ∈ K :
〈E,X〉 = 1}. Now suppose that for a vectorx ∈ 1, we havexx> = (1− λ)U +
λZ for someZ,U ∈ M and someλ with 0 < λ < 1. Choose an orthogonal
basis{x1, x2, . . . , xn} of Rn with x = xn. Then sinceZ andU also are positive
semidefinite, we get from

0= (x>i x)2 = (1− λ)x>i Uxi + λx>i Zxi
that x>i Zxi = x>i Uxi = 0 for all i < n and therefore bothZ andU have rank
one. As both belong toK, we thus obtainZ = zz> andU = uu> for some
z, u ∈ Rn+. But then we obtainx>i z = x>i u = 0 for all i < n, so thatZ andU must
be positive multiples ofxx>. The requirement〈E,Z〉 = 〈E,U 〉 = 1 shows that
Z = U = xx>.
To show the converse, suppose thatX is an extremal point ofM ⊂ K. Then
X =∑d+1

i=1 λixix
>
i with xi ∈ Rn+ \ {o} andλi > 0 for all i as well as

∑d+1
i=1 λi = 1.

SinceX ∈M, we get

1= 〈E,X〉 =
d+1∑
i=1

λi(e
>xi)2 (18)

wheree>xi > 0 for all i. Now putui = (e>xi)−1xi ∈ 1, so thatUi = uiu>i ∈ M
for all i. Hence

X =
d+1∑
i=1

λi(e
>xi)2Ui

is, due to (18), a convex combination of matricesUi in M, whence by the extremal-
ity assumptionX = U1 is of the form stated.

In principle, the roster of the algorithm of Section 2 applies, but the update
equations (14) now reduces to

〈E, dX〉 = 0
Edy − dS = O

dX +RHdS = −X
(19)
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which for the dual part means simply that we have to continue the line search for
the generalized eigenvalue bound ofA as in (17). Of course, a similar reduction
applies to the Kojima-Tunçel search directions from (11), whereQH replacesRH .

Now let us calculate the update steps explicitly, in order to avoid unnecessary
numerical complications. Remember that we have still freedom in choosing the
positive-semidefinite operatorH as long asS gives the unique direction to the
zero eigenvalue ofH (note that by assumption on linear independence of{A,E},
the matrixS = yE − A never can vanish regardless whether it belongs toK∗ or
not). For instance, we may assume that the orthoprojection ofE onto the ortho-
gonal complement ofS in Sn is also an eigenvector ofH with a suitably chosen
eigenvalueλ > 0. AsHS = O, this is equivalent to imposing

HE = λ(E − 〈E, S〉〈S, S〉 S) . (20)

THEOREM 6. PutS = yE − A, assume〈X, S〉 > 0 and denote by(dX, dy, dS)
the solution of (19). Then (20) implies

dy = −[λ(n2− 〈E,S〉2〈S,S〉 )+ 1
〈X,S〉 ]−1 ,

dS = Edy ,
dX = −[1+ dy

〈X,S〉 ]X + λdy( 〈A,S〉〈S,S〉E − 〈E,S〉〈S,S〉A) .
(21)

Proof. From 〈E, dX〉 = 0 we get 0= 〈X,E〉 + 〈RHdS,E〉. InsertingdS =
Edy we further obtaindy〈RHE,E〉 = −1. Now RHE = HE + 1

〈X,S〉X and

relation (20) yields the result fordy, observing that〈E,E〉 = n2.
Similarly, we derivedX = −X− dyRHE = −X− λdyE + λdy 〈E,S〉〈S,S〉 S− dy

〈X,S〉X,
and the proof is complete.

For further formulation, it may be convenient to writeX+αdX = (1−α)X+αY
with

Y = dy
[
λ

(〈A, S〉
〈S, S〉E −

〈E, S〉
〈S, S〉A

)
− 1

〈X, S〉X
]
. (22)

We now directly show that both objectives are indeed improved by the chosen
directions.

THEOREM 7. Assume that(X, S) ∈ K ×K∗ with 〈X, S〉 > 0. If the improving
feasible direction(dX, dy, dS) is chosen as in Theorem 6, then forα > 0 both
primal and dual objective function improve strictly, i.e.

〈A,X + αdX〉 > 〈A,X〉 and y + αdy < y.
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Proof.First,dy is strictly negative, sincen2− 〈E,S〉2〈S,S〉 = 〈E,E〉 − 〈E,S〉
2

〈S,S〉 > 0 by
the Cauchy-Schwarz inequality (note that also{E, S} are linearly independent).

To see the strict monotonicity in the primal objective function, compare the
reduction of the duality gap with the improvement in the dual objective. From
Theorem 4, we know that the reduction of the duality gap isα〈X, S〉. Therefore, to
show that also the primal objective contributes to this reduction, we have to show
that−αdy < α〈X, S〉. But

−dy = 〈X, S〉
〈X, S〉λ(n2− 〈E,S〉2〈S,S〉 )+ 1

< 〈X, S〉,

since the denominator of the above fraction is a positive number bigger than 1.

For the sake of completeness, we now also provide explicit update formulae for
the original Kojima/Tunçel search direction, i.e. for the solutions to the system

〈E, dX〉 = 0
Edy − dS = O

dX +QHdS = −X
(23)

with H now again positive-definite but otherwise arbitrary, andQH from (12).
Of course, for concrete implementation it remains to specify the valuesHE and
HS = yHE −HA.

THEOREM 8. Assume that(X, S) ∈K ×K∗ with 〈X, S〉 > 0. PutS = yE −A
and denote by(dX, dy, dS) the solution of (23). Then

dy = −[〈HE,E〉 − 〈HE,S〉2
〈HS,S〉 + 1

〈X,S〉 ]−1 ,

dS = Edy ,
dX = −[1+ dy

〈X,S〉 ]X + dy( 〈HE,S〉
〈HS,S〉HS −HE) .

(24)

Furthermore, both primal and dual objectives are strictly improved ifα > 0.

Proof.The arguments are very similar to that of Theorems 6 and 7, and therefore
omitted.

4. A hybrid method: replicator dynamics and primal-dual escape steps

To find local solutions to the standard QP (1), we propose to use replicator dynam-
ics. For the reader’s convenience, we here provide a short overview, and refer for
more detail to [7, 11, 12]. Consider the following dynamical system operating on
1:

ẋi (t) = xi(t)[(Ax(t))i − x(t)>Ax(t)] , i ∈ {1, . . . , n}, (25)
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where a dot signifies derivative w.r.t. timet , and a discrete time version

xi(t + 1) = xi(t) (Ax(t))i

x(t)>Ax(t)
, i ∈ {1, . . . , n} . (26)

Note thatx(0) ∈ Rn+ implies x(t) ∈ Rn+ for all t > 0 sinceA is nonnegative by
assumption.

Thestationary pointsunder (25) and (26) coincide, and all local solutions of (1)
are among these. Of course, there are quite many stationary points, e.g. all vertices
of1. However, it can be shown [7] thatx is a strict local solution if and only ifx is
asymptotically stable, i.e. every solution to (25) or (26) which starts close enough
to x, will converge tox ast ↗∞.

Both (25) and (26) arise in population genetics under the nameselection equa-
tionswhere they are used to model time evolution of haploid genotypes,A being
the (symmetric) fitness matrix, andxi(t) representing the relative frequency of
allele i in the population. The Fundamental Theorem of Selection states that aver-
age fitness, i.e. the objective functionx(t)>Ax(t) is (strictly) increasing over time
along trajectories [13, 23], and moreover every trajectoryx(t) converges to a sta-
tionary point [23, 33]. Furthermore, one can prove [7, 12] the following facts: if no
principal minor ofA = A> vanishes, then with probability one any trajectory con-
verges to a strict local solutionx of (1); further, ifσ = {i ∈ {1, . . . , n} : xi > 0},
theny>Ay < x>Ax for all y ∈ 1σ with y 6= x; and1◦σ is contained in the basin
of attraction ofx, where for a subsetσ ⊆ {1, . . . , n}, we shall denote the face of
1 corresponding toσ by

1σ = {x ∈ 1 : xi = 0 if i /∈ σ }
and its relative interior by

1◦σ = {x ∈ 1σ : xi > 0 if i ∈ σ } .
The dynamical systems (25) and (26) are frequently calledreplicator dynamics,

and are well suited for implementation in practical applications, see [8, 11, 42].
This is reflected also in theory by the result that (25) is most efficiently approach-
ing fixed points in the sense that it is a Shahshahani gradient system [46]. The
discrete time version (26) also corresponds to a particular instance of an algorithm
widely popular in computer vision. Theserelaxation labeling processesare closely
related to artificial neural network learning systems, and have found applications
in a variety of practical tasks, e.g. to solve certain labeling problems arising in
the 3-D interpretation of ambiguous line drawings [25, 41, 44]. Furthermore, the
dynamics (26) belongs to a class of dynamical systems investigated in [1, 2], which
has proven to be useful in the speech recognition domain [32].

Although strictly increasing objective values are guaranteed as we follow tra-
jectories under (25) or (26), we could get stuck in an inefficient local solution
x of (1). From the preceding results, then necessarilyxi = 0 for somei. One
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possibility to escape fromx is by the G.E.N.F. approach [12]. An alternative is to
merge the replicator dynamics method with the usual interior-point steps borrowed
from semidefinite programming, and this will be described in the sequel. But given
any escape procedure, we are now ready to describe the principal algorithm for
solving (1) globally. Note that this procedure stops after finitely many repetitions,
since it yields strict local solutions (in every relative interior1◦σ there is at most
one of these) with strictly increasing objective values:

Replicator Dynamics Algorithm

1. Start withx(0) = 1
n
e or nearby, iterate (26) until convergence; the limitx =

lim t→∞ x(t) is a strict local solution with probability one (provided no prin-
cipal minor ofA vanishes);

2. call an escape procedure to improve the objective, if this is still possible; denote
the improving point̃x;

3. repeat step 1., starting withx(0) = x̃.

Now we are ready to present a combination of the above procedure and the interior-
point method yielding improving direction, in the hope that this way it will be
possible to escape from inefficient local solutions.

A Hybrid Algorithm

1. Initialization: choosex(0) = 1
n
e or nearby. Puty0 = maxi,j aij . Theny0E −

A ∈ K∗.
2. Replicator dynamics for fast primal updates: starting fromx(0) iterate (26)

until convergence; the limitx = lim t→∞ x(t) is a strict local solution with
probability one; puty = x>Ax.

3. Dual update: check copositivity ofyE − A via shortcuts (cf. Fig. 1 in [6], for
a special case see [10]).
In the affirmative,x is the global solution of (1), since the duality gap is zero
(cf. also Theorem 7 in [7]); stop.
If however a point̃x ∈ 1 is found such that̃x>(yE−A)̃x < 0, theñx improves
the objective; repeat step 2 starting with this point.
Else (no decision), keep the old value ofy0, and proceed to step 4.

4. Step back from the boundary: Chooseρ > 0 so small, that the pointx =
(1− ρ)x + ρ

n
e ∈ 1 and the matrixX = (1− ρ)xx> + ρ

n
I satisfies (witĥx the

previous iterate, so thatx>Ax−x̂>Ax̂ is the previously obtained improvement)

〈A,X〉 − x̂>Ax̂ > 1

2
[x>Ax − x̂>Ax̂] > 0 .

This condition is a quadratic inequality forρ which ensures that not more than
half of the previously obtained improvement is lost. Note that by construction,
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X is both positive-definite and has a non-negative square root:

√
X =

√
ρ

n
I +

√
ρ

n
+ (1− ρ)x>x −

√
ρ

n

x>x
xx> .

5. SinceX is both positive-definite and has a non-negative square root, one can
chooseY as in (22) andα > 0 sufficiently small such that̃X = (1−α)X+αY
shares the same properties. This is possible because the mappingX 7→ √X
is Hölder continuous aroundX. Hence primal feasibility of̃X is maintained
(cf. Proposition 1), and we get an explicit positive (square root) factorization
of X̃ = FF> with F = [f1, . . . , fd+1]wherefi ∈ Rn\{o} are all non-negative
(a square root factorization of̃X can be computed by computing the spectral
decomposition ofX̃ first, and subsequently replacing the eigenvalues by their
square roots to get the spectral decomposition of the square root ofX̃). Thus
X̃ =∑d+1

i=1 λixix
T
i with λi > 0 andxi = 1

e>fi fi ∈ 1 for all i ∈ {1, . . . , d+1}.
6. Primal update: Nowx>Ax ≈ 〈A,X〉 < 〈A, X̃〉 =∑d+1

i=1 λix
>
i Axi . If possible,

choosẽx such that

x̃>Ax̃ = max
16i6d+1

x>i Axi > x>Ax .

This will always be possible if〈A, X̃〉 > x>Ax but otherwise may fail some-
times.
Repeat from step 2, starting withx(0) = x̃.

The following small example illustrates the ideas behind the hybrid algorithm. In
particular, the example is meant to illustrate how the escape strategy in steps 4
through 6 works.

EXAMPLE 9. LetA =
[
2 1
1 3

]
and suppose we arrived via replicator dynamics

starting at x̂ =
[

1
2
1
2

]
already at the (suboptimal) local solutionx =

[
1
0

]
. Then

X = x xT =
[
1 0
0 0

]
andy = x>Ax = 2 with improvement

x>Ax − x̂>Ax̂ = 1

4
.

Asx is not the global solution, the matrixS = yE−A =
[
0 1
1 −1

]
is not copositive.

Following step 3 of the hybrid algorithm, we return to the oldy0 = maxi,j aij = 3

and arrive at the dually feasible (i.e., copositive) matrixS = y0E − A =
[
1 2
2 0

]
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which incidentally coincides with the optimalS∗ = y∗E−A (see below). Note that
although neitherX nor S is interior, we have〈X, S〉 = 1> 0.

Suppose for the moment we ignored step 4 above and tried to proceed directly
in forming the matrixY̌ (the sigň shall emphasize that this trial is preliminary)
for the escape step along (21) and (22). The key quantities in (21) and (22) are
〈E, S〉 = 5; 〈A, S〉 = 6; and 〈S, S〉 = 9. Hence

〈A, S〉
〈S, S〉E −

〈E, S〉
〈S, S〉A =

1

9

[−4 1
1 −9

]
(27)

and, furthermore,ďy = −[λ(4− 25
9 )+ 1

〈X,S〉 ]−1 = −[11
9 λ+ 1]−1. Therefore

Y̌ = −ďy
[

4
9λ+ 1 −λ

9−λ
9 λ

]
which is positive-definite but has negative off-diagonal entries so thatX̌ = (1−
α)X + αY̌ is infeasible for all positiveλ. This shows that the step back from the
boundary,i.e.step 4 in the hybrid algorithm is really necessary. Note that ignoring
primal feasibility in this respect, one could investigate instead whether the vector
X̌e = (1− α)x + αY̌ e belongs to1 (i.e., has no negative coordinate, as automat-
ically e>X̌e = 〈E, X̌〉 = 1), and improves the objective. With regard to the latter
aim, it is desirable to takeα as large as possible (recall thatx is locally optimal
and the objective is quadratic so that the improvement will be largest for the largest
possible distance – if there is one at all). In our case, this means considering as a
candidate for an improving point in1 the vector

Y̌ e =
[ 3λ+9

11λ+9
8λ

11λ+9

]
→
[

3
11
8
11

]
as λ→∞ ,

and indeed we manage to escape because we get an improvement ifλ is chosen
large enough, as(Y̌ e)>A(Y̌ e)→ 258

121 > 2 for λ→∞.
But let us return to the hybrid algorithm as proposed above: choose, e.g.,ρ =

0.2 in step 4, so that

x = (1− ρ)x + ρ
n
e =

[
0.9
0.1

]
and xx> =

[
0.81 0.09
0.09 0.01

]
as well as

X = (1− ρ)xx> + ρ
n
In =

[
0.748 0.072
0.072 0.108

]
with 〈X, S〉 = 1.036,

so that the duality gap will be slightly increased, as expected. Note thatS and the
update part (27) ofY remain the same as the dual variabley does not change, and
observe that, as required in step 4, the choice ofρ = 0.2 satisfies

〈A,X〉 − x̂>Ax̂ = 1.964− 1.75>
1

8
= 1

2
[x>Ax − x̂>Ax̂] .
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Now

Y = −dy
[

1

〈X, S〉X +
λ

9

[
4 −1
−1 9

]]
.

Motivated by the trial withX̌ above, we chooseλ large enough to enable an escape,
e.g.λ = 9/〈X, S〉 ≈ 8, and arrive at the positive-definite matrix

Y = 1

12

[
4.748 −0.928
−0.928 9.108

]
.

Hence the primal feasibility requirement̃X = (1− α)X + αY ∈ K will be met
if and only if all entries of the latter matrix are non-negative, which meansα 6
0.864
1.792 ≈ 0.482. A typical choice ofα in step 5 would beα = 0.482

2 (cf. [47]), but for
simplicity we choose hereα = 1

3. Then

X̃ ≈
[
0.6306 0.0222
0.0222 0.3250

]
∈ int K with

√
X̃ ≈

[
0.7939 0.0163
0.0163 0.5699

]
and〈X̃, A〉 = 2.2806> 2= 〈X,A〉. In step 6 of the hybrid algorithm we therefore
obtain

x̃ ≈ [0.0278, 0.9722]>,
by normalizing the last column of

√
X̃, with objective valuẽx>Ax̃ ≈ 2.8912> 2.

The last steps in the hybrid algorithm are as follows: use the improving pointx̃

as the starting vector for the replicator dynamics iteration, which finally leads to

the global solutionx∗ =
[
0
1

]
. For the final check for optimality we now calculate

X∗ = x∗(x∗)> =
[
0 0
0 1

]
; y∗ = x̂>Ax̂ = 3; and S∗ = y∗E − A = S as specified

above, with〈X∗, S∗〉 = 0.

While exploiting sparsity is problematic in general for primal-dual interior point
methods for semidefinite programs (cf. also [16, 17]), this is not the case here
since we only consider a special problem, namely (16). In this case the dual prob-
lem has only one variable, and the Newton system may be efficiently formed and
solved. A similar approach is described in [26] where a primal-dual interior point
method is formulated to find the smallest eigenvalue of a symmetric matrix using
a semidefinite program. In this case the dual looks just like (17), if one replaces
E by the identity matrix andK∗ by P . For such problems, sparsity issues are not
problematic. We even know the solution of the Newton system explicitly via (22)
and Theorem 8 where we can exploit sparsity ofA for the matrix calculations
explicitly.

All the steps in the algorithm can be implemented efficiently, except the line
search in step 5 to find̃X, where we may have to calculate several square root
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factorizations. This is the reason why we recommend not to iterate step 5 but rather
use this as an escape procedure. The workhorse of the optimization process is more
or less the (locally optimizing) replicator dynamics iteration. It remains to be seen
if this can be done in a practical way.

While convergence to a local solution is guaranteed with probability one (re-
ferring to the choice of a starting point) by virtue of the replicator dynamics under
mild conditions [12], it should be plausible from NP-hardness of problem (1) that
one cannot hope for a general convergence result of the whole hybrid algorithm.
Rather, we suggest to use the affine-scaling steps as an escape procedure which
hopefully enables us to find an improving feasible point if the local solution found
by replicator dynamics turns out to be inefficient.

5. Conclusions

The problem of maximizing a quadratic form over the simplex has an exact refor-
mulation as a copositive programming problem, i.e. a conic programming problem
over the cone of copositive matrices. The advantage of such a reformulation is that
successful ideas from the theory of interior point methods can thus be applied to
nonconvex quadratic optimization. In particular, primal-dual affine scaling direc-
tions can be used in escape strategies if inefficient local solutions are obtained from
local optimization procedures like replicator dynamics.
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